李昂,南开大学人工智能学院2022级博士研究生
研究方向:基于深度学习、模式识别、知识图谱与大模型的电力设备智能故障诊断与健康状态评估,聚焦于绝缘缺陷导致的局部放电相关研究。
已发表成果:
- Li. A, Wei. G, Zhang. J, Zhang. C. Partial Discharge Detection via Self Supervised Graph Contrastive Clustering [J]. IEEE Transactions on Industrial Informatics, 2025, VOL: 21, No: 5. (中科院一区, JCR Q1, IF=9.9)
- Li. A, Wei. G, Zhang. J, Zhang. C. Pattern Recognition of Partial Discharge in High-Voltage Cables Using TFMT Model [J]. IEEE Transactions on Power Delivery, 2024, Vol: 39, No: 6. (中科院二区, JCR Q1, IF=3.8)
- Li. A, Wei. G, Zhang. J, Zhang. C. Anomaly Detection of Partial Discharge Signals in Trans formers Based on Self-Supervised Temporal Contrastive Learning [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2025. DOI: 10.1109/TDEI.2025.3595516 (中科院二区, JCR Q1, IF=3.1